## Modelling the theoretical ELF spectra of lightning discharges with a continuing current

**Tamás Bozóki**<sup>1,2</sup>, Janusz Mlynarczyk, Ernő Prácser, Andrzej Kulak, Gabriella Sátori, Martin Füllekrug, Earle Williams



ELF Seminar 26 March 2025

# Modelling Schumann resonances



#### Some benefits:

- Independent view on global lightning activity
- Intensity of lightning activity in terms of an absolute physical quantity: vertical charge moment change
- Natural global integration

#### Some challenges:

- Lack of ground-truth lightning data
- Changing propagation conditions
- Model simplifications

## Modelling Schumann resonances







**Analytical model** following Kirillov et al. (1997) and Mushtak and Williams (2002):

$$E_r(\omega,\theta) = \frac{Ids(\omega)Z}{4\pi H_e^2} \sum_{n=0}^{\infty} \frac{2n+1}{n(n+1) + YZR^2} P_n(\cos\theta) ,$$

$$B_{\phi}(\omega,\theta) = \frac{\mu I ds(\omega)}{4\pi R H_e} \sum_{n=0}^{\infty} \frac{2n+1}{n(n+1) + Y Z R^2} P_n^1(\cos\theta) ,$$

#### $Ids(\omega)$ : Current moment spectrum of the source

 $Z(\omega), Y(\omega)$ : Impedance and admittance parameters  $H_e(\omega)$ : Complex electric altitude of the waveguide R: Earth's radius

 $P_n, P_n^{-1}$ : Legendre and associated Legendre polynomials of order n

## Motivation (Kulak et al., 2006)

"The properties of damped resonators with a source are **more complex than it can be concluded from the classical solutions**. In this paper we present a model describing the ELF wave propagation inside the Earth-ionosphere cavity based on the assumption that the **ELF field in any point of the cavity is a superposition of a transmission and a resonance component** with phases dependent on the observer-source distance."



Amplitude spectra of electric  $E(\omega)$  and magnetic  $B(\omega)$  field components calculated for the observer-source distances 5.36, 10, and 14.64 Mm (from Kulak et al., 2006).

# Motivation (SR inversion)

It was already discussed by Madden & Thompson (1965) that the **SR source spectrum is not necessarily flat**. The presence of **"slow" discharges with a continuing current** and/or **correlations between repeated strokes** can enhance the low frequency end of the spectrum (Madden & Thompson, 1965). Shvets (2001) found that the theoretical SR spectra best fit the measurements when an **effective time constant** of 3.5 ms was used.



Reconstruction of ELF spectra measured at Bharati (Antarctica) and Hylaty (Poland) stations during the eruption of the Hunga-Tonga volcano in 2022.

## Main research questions

- Does the analytical model accurately describe the superposition of propagating and traveling waves in the Earth-ionosphere cavity resonator?
- Can we use a modified version of the analytical model to "redden" the theoretical ELF spectra to get them closer to the measurements?

(1)

(2)

(3)

### **Full numerical (FDTD) model** from Marchenko et al. (2022)

$$\varepsilon_{0} \frac{\partial E_{r}}{\partial t} + \sigma E_{r} + J_{r} = \frac{1}{r \sin \theta} \left[ \frac{\partial}{\partial \theta} \left( H_{\phi} \sin \theta \right) \right],$$
  

$$\varepsilon_{0} \frac{\partial E_{\theta}}{\partial t} + \sigma E_{\theta} = -\frac{1}{r} \frac{\partial}{\partial r} \left( r H_{\phi} \right),$$
  

$$\mu_{0} \frac{\partial H_{\phi}}{\partial t} = -\frac{1}{r} \left[ \frac{\partial}{\partial r} \left( r E_{\theta} \right) - \frac{\partial E_{r}}{\partial \theta} \right],$$



(a) The "knee" conductivity profile used in the FDTD model and (b) the complex, frequency dependent He and Hm altitudes determined from this profile and used in the analytical calculations (Mushtak & Williams, 2002).

## Source model

$$\text{Time domain:} \quad I(t) = \begin{cases} 0 & t < 0, \\ \frac{1}{\tau} e^{-t/\tau} & t \ge 0. \end{cases} \quad \text{Frequency domain:} \quad I(\omega) = \frac{1}{1 + i\omega\tau}$$



(a) Current spectra of lightning sources with different decay times ( $\tau$ ). (b) Theoretical magnetic spectra of 60° for the same  $\tau$  values calculated with the analytical model. Note the more and more reddish spectrum with increasing  $\tau$ .



Theoretical **electric** spectra for different source-observer distances (10°, 30°, 60°, 90°, 120°, 180°) calculated with the analytical (black) and the full numerical (FDTD) model (gray) with an **impulse-like excitation source** ( $\tau = 0$  ms).



Theoretical **magnetic** spectra for different source-observer distances (10°, 30°, 60°, 90°, 120°, 180°) calculated with the analytical (black) and the full numerical (FDTD) model (gray) with an **impulse-like excitation source** ( $\tau = 0$  ms).



Theoretical electric spectra for different source-observer distances (10°, 30°, 60°, 90°, 120°, 180°) calculated with the analytical (black) and the full numerical (FDTD) model (gray) with an exponentially decaying excitation source ( $\tau = 20$  ms).



Theoretical **magnetic** spectra for different source-observer distances (10°, 30°, 60°, 90°, 120°, 180°) calculated with the analytical (black) and the full numerical (FDTD) model (gray) with an **exponentially decaying excitation source** ( $\tau = 20$  ms).

| Distance [°] | C <sub>E, delta</sub> | C <sub>E, 10ms</sub> | C <sub>E, 20ms</sub> | C <sub>E, 50ms</sub> |
|--------------|-----------------------|----------------------|----------------------|----------------------|
| 10           | 0.998                 | 0.997                | 0.996                | 0.996                |
| 30           | 0.997                 | 0.998                | 0.998                | 0.999                |
| 60           | 0.995                 | 0.998                | 0.998                | 0.992                |
| 90           | 0.996                 | 0.995                | 0.992                | 0.965                |
| 120          | 0.998                 | 0.996                | 0.996                | 0.993                |
| 180          | 0.997                 | 0.994                | 0.996                | 0.992                |
| Distance [°] | C <sub>B, delta</sub> | C <sub>B, 10ms</sub> | C <sub>B, 20ms</sub> | C <sub>B, 50ms</sub> |
| 10           | 0.998                 | 1.000                | 1.000                | 1.000                |
| 30           | 0.999                 | 0.998                | 0.999                | 0.999                |
| 60           | 0.998                 | 0.998                | 0.998                | 0.998                |
| 90           | 0.999                 | 0.999                | 0.999                | 0.999                |
| 120          | 0.999                 | 0.999                | 0.999                | 0.999                |

The **correlation coefficients** ( $C_E$  and  $C_B$ ) between theoretical spectra (5-30 Hz) calculated with the analytical and the full numerical models for different source-observer distances and excitation sources.

| Distance [°] | ΔS <sub>E,delta</sub> [%] | $\Delta S_{E,10ms}$ [%] | $\Delta S_{E,20ms}$ [%] | $\Delta S_{E,50ms}$ [%] |
|--------------|---------------------------|-------------------------|-------------------------|-------------------------|
| 10           | 8.2                       | 6.6                     | 5.8                     | 4.2                     |
| 30           | 5.3                       | 4.8                     | 5.2                     | 8.2                     |
| 60           | 5.6                       | 7.6                     | 11.9                    | 24.1                    |
| 90           | 8.9                       | 7.9                     | 8.7                     | 14.1                    |
| 120          | 10.8                      | 12.2                    | 15.4                    | 25.1                    |
| 180          | 4.9                       | 4.5                     | 4.5                     | 8.7                     |
| Distance [°] | ΔS <sub>B,delta</sub> [%] | $\Delta S_{B,10ms}$ [%] | $\Delta S_{B,20ms}$ [%] | $\Delta S_{B,50ms}$ [%] |
| 10           | 8.3                       | 8.1                     | 7.6                     | 5.9                     |
| 30           | 5.0                       | 5.1                     | 5.0                     | 4.7                     |
| 60           | 4.5                       | 4.7                     | 4.8                     | 5.1                     |
| 90           | 3.5                       | 3.6                     | 3.7                     | 3.8                     |
| 120          | 3.7                       | 3.6                     | 3.5                     | 3.5                     |

The **mean relative differences** ( $\Delta S_E$  and  $\Delta S_B$ ) between theoretical spectra (5-30 Hz) in % calculated with the analytical and the full numerical models for different source-observer distances and excitation sources.

## Summary

- The global EM resonance field produced by impulse-like and exponentially decaying lightning sources can be described with **good accuracy** by a modified version of the widely used analytical model describing Schumann resonances.
- This result indicates that the stationary solution given by the **analytical model is able to describe the superposition of standing and traveling waves** in the strongly damped Earth-ionosphere cavity resonator.
- For future studies dealing with "background" SRs, we propose the use of the exponentially decaying excitation source in the analytical model, which may lead to a better agreement with the measurements than the impulse-like excitation source.

## Thank you for your attention!

#### <u>Contact:</u> Bozoki.Tamas@epss.hun-ren.hu